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1. Equilibrium Fractal Wave in the Contemporary Science 

1.1 Introduction to Equilibrium Fractal Wave 
 

The concept of Equilibrium Fractal Wave was first introduced in the book: 

Financial Trading with Five Regularities of Nature: Scientific Guide to Price Action 

and Pattern Trading (Seo, 2017). At that time, the book was written for the pure 

motivation to identify the important market dynamics for financial traders. The 

concept of Equilibrium Fractal Wave was born by combining two scientific areas 

including time series and fractal analysis. The main propositions in the 

Equilibrium Fractal Wave include: 

 

1. The separate or combined analysis of trend and Fractal wave is possible. 

2. The repeating patterns in Equilibrium Fractal Wave are equivalent to the 

infinite number of distinctive cycles because the scale of the repeating 

pattern varies infinitely. 

3. Equilibrium Fractal Wave is just a superclass of all the periodic wave 

patterns we know. 

 

First, let us demonstrate the equilibrium fractal wave for readers. The easiest 

way to demonstrate the equilibrium fractal wave is through the pattern table 

presented in Figure 1-1 (Seo, 2017). Many applied researchers in time series and 

statistics will agree that patterns in the column 1, 2, 3 and 4, from first regularity 

to fourth regularity, are the mainly extracted features and patterns in their 

everyday research and operation. It is also agreeable that cyclic wave pattern 

can co-present with trend together. This concept is the main assumption behind 



3 
 

the classic decomposition theory in the time series analysis. In the time series 

pattern table created by Gardner in 1987 (Figure 1-2) represents this concept 

clearly. The first row in the pattern table (Figure 1-1) shows the data in which no 

trend or weak trend exists. The second, third and fourth rows shows the co-

existence of trend and waves. 

 

Until now, many forecasting or industrial scientists use such concept to build 

forecasting models. Likewise, there are many applied software to create the 

forecasting or prediction model of this kind. Some example forecasting software 

with such modelling capability includes: 

1. Stata (www.stata.com) 

2. Eviews (www.eviews.com) 

3. IBM SPSS (www.ibm.com/products/spss-statistics) 

4. SAS (www.sas.com) 

5. MatLab (www.mathworks.com) 

6. R (www.r-project.org) 

7. And many others 
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Figure 1-1: Five Regularities and their sub price patterns with inclining trends. 

Each pattern can be referenced using their row and column number. For 

example, exponential trend pattern in the third row and first column can be 

referenced as Pattern (3, 1) in this table. 
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Figure 1-2: The original Gardner’s table to visualize the characteristics of 

different time series data (Gardner, 1987, p175). Gardner assumed the three 

components including randomness, trend and seasonality in this table. 

 

 

Now the fifth column in Figure 1-1 presents the equilibrium fractal wave. This is 

extended part from the original Gardner’s table (Figure 1-2). When we list the 

equilibrium fractal wave in the fifth column, we can see that the pattern table 

(Figure 1-1) shows a systematic pattern. From left column to right column, we 

can see that the number of distinctive cycles in the data increases. For example, 
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we can assume the pure trend does not have any periodic cycle. Therefore, 

number of the distinctive cycle is zero for pure trend series. Under the second 

and third columns, we can have one to several distinctive cycles depending on if 

the series follows daily, monthly, and yearly cycles. Under fourth column, we 

can have many more distinctive cycles outside daily, monthly and yearly cycles 

but the number of the cycles is finite. Fourier analysis or principal component 

method can be used to reveal the number of cycles for any series under column 

4. From column 1 to column 4, you might be following this systemic pattern 

pretty well. 

However, you might question why equilibrium fractal wave in column 5 

possesses such infinite number of distinctive cycles. This is indeed the right 

question to ask. To understand this, you have to understand the fractal wave 

first. 

 

A lot of research on fractal analysis was done by B. Mandelbrot (1924-2010). The 

Book: fractal geometry of nature (Kirkby, 1983) describes the nature of fractal 

geometries in scientific language. What is the difference between fractal wave 

and equilibrium fractal wave in this article? Fractal wave views a series as the 

subject of fractal analysis. Equilibrium Fractal wave views a series as the co-

subject of fractal analysis and trend analysis. Hence, equilibrium fractal wave 

believes co-existence of trend and wave pattern in a single data series. The 

significance of equilibrium fractal wave is that we can model the trend and 

fractal wave in two separate steps or in one-step. 

Indeed, scientists use the two-step process to model the data in column 2, 3 and 

4 in economic and financial research. For example, price series under column 4 

can be modelled with trend in the first step. Then the reminding data can be 
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modelled using cycles in the second step. Likewise, for a data series under 

column 5, we can model a trend part first, then we can model a fractal wave 

patterns in separate steps. This explains the Proposition 1. This also imposes the 

fractal analysis under non-stationary condition when the trend component is 

strong in the data series. In this case, two-step modelling process might be 

advantageous. When the trend component is less dominating comparing to 

fractal wave component, the entire price series can be modelled using fractal 

analysis only. Proposition 1 states that the choice on the modelling process, 

either one-step or two-steps, is conditional upon the characteristics of the price 

series. 

 

In the Book: fractal geometry of nature (Kirkby, 1983), the main characteristics 

of fractal wave is described as the repeating patterns in varying scales. To give 

you some idea of repeating patterns in varying scales, we can create a synthetic 

data like that using Weierstrass function. This function is famous for being 

continuous everywhere but non-differentiable nowhere among the math 

community. Of course, real world data will never look like this. However, this 

synthetic data describe what is repeating pattern in varying scale very well for 

our readers in Figure 1-3. You will see the same patterns everywhere in the data. 

Small pattern are combined to become the bigger pattern. The resulting bigger 

patterns look the same like small patterns. As the combing process continues, 

the size of the pattern can increase infinitely. This is referred to as repeating 

patterns in varying scale or varying size. This is the core assumption on any 

fractal analysis. 
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Now let us walk backwards from this combining process. Let us assume that we 

can extract those patterns in the same scale from rest and we can put them on 

the separate paper for each scale. When we separate those patterns in the 

smallest scale from rest, then the extracted series become the first cycle of our 

data. This extracted series with one cycle is not different from data or a series in 

column 2, 3 and 4. Likewise, we can separate the second smallest patterns from 

rest. This will become second cycle of our data. In this time, the frequency of 

second cycle will be less comparing to the first cycle because the period of 

second cycle is greater than first cycle. We can keep continue this separating 

process to create another cycles. Since we can combine to create the repeating 

patterns infinitely, we can separate the repeating pattern infinitely too. This 

describes the proposition 2, the infinite number of distinctive cycle. 
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Figure 1-3: Weierstrass function to give you a feel for the Fractal-Wave process. 

Note that this is synthetic Fractal-Wave process only and this function does not 

represent many of real world cases. 

 

 

Now the Proposition 2 can lead to the Proposition 3 naturally. As you can see 

from Figure 1-4, from left to right columns, the number of distinctive cycle 

increases. Therefore, it is not so hard to say that equilibrium Fractal Wave is a 

superclass of all the periodic wave patterns we know in column 1, 2, 3 and 4. 

Figure 1-4 shows this concept clearly to our reader. 
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Figure 1-4: Visualizing number of distinctive cycle periods for the five regularities. 

Please note that this is only the conceptual demonstration and the number of 

cycles for second, third and fourth regularity can vary for different price series. 

 

 

Finally, in many real world data, we do not possess the highly regular patterns 

as in a synthetic data like that using Weierstrass function in Figure 1-3. The highly 

regular repeating patterns are described as the stick self-similarity in In the Book: 
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fractal geometry of nature (Kirkby, 1983). Instead of the strict self-similarity, the 

real world data will form loose self-similarity shown in Figure 1-5. For the 

financial price series, we can observe the repeating zigzag patterns made up 

from so many triangles. The triangles are only similar. However, each triangle in 

the data will be never identical to the other triangles. This is the typical example 

of loose self-similarity. This sort of loose self-similarity is much harder to model 

comparing to the strict self-similarity shown in a synthetic data like that using 

Weierstrass function (Figure 1-3). 

 

 

Figure 1-5:  Loose self-similarity in the financial price series. 
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1.2 Empirical Research on Equilibrium Fractal Wave 
 

As we have described, the concept of equilibrium fractal wave allow us to model 

the series as the co-subject between trend and fractal wave or as the single 

subject of fractal wave. The modelling choice will depend on the characteristics 

of data. Regardless of the modelling choice, Empirical research on equilibrium 

fractal wave must concern the fractal patterns in data series. Empirical research 

on equilibrium fractal wave in the price series data is relatively small because 

mainstream academic research is based on the algorithm utilizing the entire 

data sets like multiple regression techniques instead of detecting patterns. 

 

One exception is the financial trading community. In the trading community, the 

repeating patterns or repeating geometry was used as early as 1930s. Some 

pioneers include R. Schabacker (1932), H.M. Gartley (1935) and R.N. Elliott (1938) 

in time order. In their books, the various repeating patterns were described for 

various US stock market data (Figure 1-6, 1-7 and 1-8). Until now, millions of 

traders are using these patterns in their practical applications for the profiting 

purpose in forex, future, and stock markets. Figure 1-6, 1-7 and 1-8 shows the 

commonly used repeating patterns by the financial trader. Having said that 

these repeating patterns in Figure 1-6, 1-7 and 1-8 were not modelled as the co-

subject between trend and fractal wave. Instead, those repeating patterns are 

only modelled as the subject of fractal wave. Only exception is the trend filtered 

ZigZag indicator and excessive momentum indicator created recently (Seo, 

2018). This is understandable consequence because the idea of equilibrium 

fractal wave and the two-step modelling process were only introduced in 2017. 

The modelling technique using trend and fractal wave patterns are only 

available recently. One very purpose of this article is to inform you that it is 
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possible to model the financial price series as the co-subject between trend and 

fractal wave in two separate steps. 

 

At the same time, another purpose to create equilibrium fractal wave was to 

connect the contemporary science to many repeating patterns used by the 

financial traders. Considering that millions of the financial traders now use the 

repeating patterns for their every day trading, this is a phenomenal level of 

activity by the society. Many traders are much happier to use the repeating 

patterns than the traditional math or technical indicators. Unfortunately, the 

connection between the repeating patterns and the contemporary science is 

very poor. It seems no literature is positioning those repeating patterns in the 

scalable scientific framework. Neither the financial trading community have 

much idea on what these repeating patterns are and why they are using these 

patterns. Simply speaking the communication between two communities is 

blocked. If R.N. Elliott (1938) had a chance to meet B. Mandelbrot (1924-2010), 

then things may have changed bit. However, they lived in two different time. 

 

The pattern table in Figure 1-1 shows that repeating patterns are merely the 

extended concept from the conventional mathematical knowledge. We know 

that it is not so hard to put these five regularities together under the same table. 

Potential for academic and applied research in equilibrium fractal wave is huge. 

The main concern is that many techniques used for periodic wave pattern 

analysis may not work with equilibrium fractal wave because of the infinite 

number of the distinctive cycle in the data. To the best knowledge, Fourier 

analysis and many other similar techniques will not handle the infinite number 

of the distinctive cycle. Therefore, developing new analytical techniques remain 
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as the main challenge for the empirical research in equilibrium fractal wave. In 

many cases, the algorithm or pattern recognition modelling the price series as 

the co-subject of trend and fractal wave will improve the prediction accuracy 

much more. 

 

 

Figure 1-6: List of triangle and wedge patterns. 
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Figure 1-7: Ascending Triangle pattern found in USDCAD in H1 chart. 
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Figure 1-8: Repeating Gartley patterns in Hourly EURUSD Chart Hourly. 

 

 

1.3 Analogical Reasoning to the Modified Quantum Physics 
 

This section discusses the separate concern from this article. However, this part 

serves another important purpose for this article. In previous chapter, we have 

shown that equilibrium fractal wave in column 5 extends the structure of trend 

and wave in column 2, 3 and 4 of the price pattern table (Figure 1-1). We were 

able to create the systematic framework for data with zero to infinite number 

of distinctive cycles. For convenience, we will call the wave and trend structure 
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as equilibrium wave as shown in Figure 1-9. Equilibrium wave is common data 

structure found in real world. The important characteristic of Equilibrium wave 

is the finite number of periodic cycles. The cycles in equilibrium wave are 

periodic and we can measure how long the cycle lasts with our stopwatch. Many 

social and non-social data can show strong behaviour of equilibrium wave too. 

The periodic cycles can be modelled well using Fourier analysis and other similar 

techniques. As we know, Fourier analysis and the quantum physics have a strong 

connection. Fourier analysis can be used to decompose a typical quantum 

mechanical wave function. In addition, the trend part of equilibrium wave and 

particle part of quantum physics can be modelled through many common 

analysis techniques in the statistics, signal processing, and object tracking field 

too, for example, Kalman filter or similar techniques. Therefore, it is not so harsh 

to say that equilibrium wave in column 2, 3 and 4 in Figure 1-1 closely resembles 

the idea of wave and particle duality of the quantum physics. 

 

To the best knowledge, both data structure is not 100% compatible. However, 

there is certainly some compatible structure between equilibrium wave and 

wave-particle duality. For this reason, we could make some analogical reasoning 

here. As we can extend the classic wave pattern into equilibrium fractal wave 

pattern (Figure 1-1), we might be able to extend the quantum physics further to 

deal with the infinite number of distinctive cycles. It is often heard that many 

quantum physics based algorithms fail to bring the profits or good prediction in 

the financial trading. The reason might be that the contemporary quantum 

physics is not dealing with the infinite number of distinctive cycles present in the 

data. Although this might be just guess for now, the modified quantum physics 

might work better in the financial trading than the contemporary quantum 
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physics. If they do so, then the modified quantum physics can possibly lead to 

the potential technological breakthrough in developing better medicine and 

better spaceship in the future. This is just some research ideas for those working 

in physics in a hope to provide some alternative solutions to many unsolved 

problems in this world. 

 

 

Figure 1-9: Five Regularities and their sub price patterns. 
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